Exploring bacteria-induced growth and morphogenesis in the green macroalga order Ulvales (Chlorophyta)
نویسنده
چکیده
Green macroalgae, such as Ulvales, lose their typical morphology completely when grown under axenic conditions or in the absence of the appropriate microbiome. As a result, slow growing aberrant phenotypes or even callus-like morphotypes are observed in Ulvales. The cross-kingdom interactions between marine algae and microorganisms are hence not only restricted by the exchange of macronutrients, including vitamins and nutrients, but also by infochemicals such as bacterial morphogenetic compounds. The latter are a fundamental trait mediating the mutualism within the chemosphere where the organisms interact with each other via compounds in their surroundings. Approximately 60 years ago, pilot studies demonstrated that certain bacteria promote growth, whereas other bacteria induce morphogenesis; this is particularly true for the order of Ulvales. However, only slow progress was made towards the underlying mechanism due to the complexity of, for example, algal cultivation techniques, and the lack of standardized experiments in the laboratory. A breakthrough in this research was the discovery of the morphogenetic compound thallusin, which was isolated from an epiphytic bacterium and induces normal germination restoring the foliaceous morphotypes of Monostroma. Owing to the low concentration, the purification and structure elucidation of highly biologically active morphogenetic compounds are still challenging. Recently, it was found that only the combination of two specific bacteria from the Rhodobacteraceae and Flavobacteriaceae can completely recover the growth and morphogenesis of axenic Ulva mutabilis cultures forming a symbiotic tripartite community by chemical communication. This review combines literature detailing evidences of bacteria-induced morphogenesis in Ulvales. A set of standardized experimental approaches is further proposed for the preparation of axenic algal tissues, bacteria isolation, co-cultivation experiments, and the analysis of the chemosphere.
منابع مشابه
Time Course Exo-Metabolomic Profiling in the Green Marine Macroalga Ulva (Chlorophyta) for Identification of Growth Phase-Dependent Biomarkers
The marine green macroalga Ulva (Chlorophyta) lives in a mutualistic symbiosis with bacteria that influence growth, development, and morphogenesis. We surveyed changes in Ulva's chemosphere, which was defined as a space where organisms interact with each other via compounds, such as infochemicals, nutrients, morphogens, and defense compounds. Thereby, Ulva mutabilis cooperates with bacteria, in...
متن کاملA novel marine algal toxicity bioassay based on sporulation inhibition in the green macroalga Ulva pertusa (Chlorophyta).
A 5-day aquatic toxicity test based on sporulation inhibition of the green macroalga Ulva pertusa Kjellman has been developed. Optimal test conditions determined for photon irradiance, salinity and temperature were 60-200 micromol photons m(-2)s(-1), 25-35 per thousand and 15-20 degrees C, respectively. Tests were conducted by exposing U. pertusa thallus disks to a reference toxicant (sodium do...
متن کاملAnalysis of a Plastid Multigene Data Set and the Phylogenetic Position of the Marine Macroalga Caulerpa Filiformis (chlorophyta)(1).
Molecular phylogenetic relationships within the Chlorophyta have relied heavily on rRNA data. These data have revolutionized our insight in green algal evolution, yet some class relationships have never been well resolved. A commonly used class within the Chlorophyta is the Ulvophyceae, although there is not much support for its monophyly. The relationships among the Ulvophyceae, Trebouxiophyce...
متن کاملBacteria-induced morphogenesis of Ulva intestinalis and Ulva mutabilis (Chlorophyta): a contribution to the lottery theory
The green marine macroalgae of the class Ulvophyceae (Ulvophytes) are common algae distributed worldwide particularly in intertidal areas, which play a key role in aquatic ecosystems. They are potentially valuable resources for food, animal feed and fuel but can also cause massive nuisance blooms. Members of Ulvaceae, like many other seaweeds, harbour a rich diversity of epiphytic bacteria with...
متن کاملThe Complete Chloroplast and Mitochondrial Genomes of the Green Macroalga Ulva sp. UNA00071828 (Ulvophyceae, Chlorophyta)
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here,...
متن کامل